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Abstract A stochastic phase-space description is derived for a particle-based
system whose total number of particles can change in time due to chemical reac-
tions. Transition rates are specified explicitly for the Selkov reaction mechanism and
incorporate local reactions, local collisions and free-streaming of particles. The colli-
sion mechanism corresponds to a numerically efficient multi-particle collision model
that conserves mass, momentum and energy during the collision process. Through
an appropriate averaging procedure, the stochastic description is shown to lead to
the correct macroscopic rate law in a well-stirred homogeneous system, and simula-
tions from the corresponding numerical method are shown to confirm these results in
large three-dimensional systems. Simulations for smaller systems were performed to
demonstrate the effects of spatial fluctuations on the system. Our results indicate that
the phase-space description, whose transition rates correspond to a particular numeri-
cal method, provides a suitable framework from which the non-equilibrium nature of
chemically reacting media can be explored. The methods are well-suited to investi-
gate the breakdown of continuum models in spatially extended chemical systems for
which the total number of particles changes in time. The novel stochastic phase-space
description derived here has not been considered elsewhere. Coupled to the numerical
method, our approach allows exploration of far-from-equilibrium conditions, and a
means to connect the numerical results to a theoretical model. The methods provide a
powerful tool that can be used in various applications including biochemical networks
and fluid flow of chemical media.

Keywords Phase-space description · Chemical reactions · Multi-particle collision
dynamics · Spatial fluctuations

K. Rohlf (B)
Department of Mathematics, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B2K3
e-mail: krohlf@ryerson.ca

123



142 J Math Chem (2009) 45:141–160

1 Introduction

It is fairly well known that small-scale fluctuations can give rise to complex large-scale
behaviour that can be difficult or impossible to model using a mean-field approach.
The addition of stochastic noise to mean-field equations has been successful at cap-
turing some of these effects, but these methods can only be used if the fluctuations
in the system are small compared to the time evolution of the quantities of interest.
In some chemical systems for which low concentrations of some or all of its chem-
ical constituents is possible, such as in biochemical networks for gene expression,
this may not be the case, and to adequately incorporate the effects of noise arising
from spatial fluctuations in such systems, more sophisticated approaches are neces-
sary [1]. In chemical systems that are far from equilibrium, near bifurcation points, or
in the chaotic regime, fluctuations can also play an important role leading to complex
behaviour that cannot be captured using mean-field dynamics alone [2] .

A number of techniques have been developed that correctly recover the mean-field
dynamics in appropriate limits, and that have the potential to explore some of the rich
dynamics that can arise due to spatial fluctuations in the system. Cellular automaton
models are one such example, and these have been quite popular as they incorporate
particle motion and interaction using simple rules that are computationally easy to carry
out. Such approaches have been successfully used to study various phenomena arising
in physics [3–6], biology [1,7] and chemistry [4,5,8–20]. An extensive review of
the different probabilistic cellular automaton models used to study spatially extended
systems is given in [21,22]. One key disadvantage of such approaches is that the
particles are generally restricted to sites on a lattice, and particle interaction is not
physically realistic.

More realistic particle-based methods that are still computationally feasible but do
not require the particle dynamics to be restricted to sites on a lattice have recently been
introduced [23–25]. Using appropriate arguments, it has been shown that the corre-
sponding stochastic phase-space description has an H theorem, and the Navier–Stokes
equations can be derived by means of a Chapman–Enskog expansion. Correct veloc-
ity profiles have been recovered in several classical hydrodynamic flow problems
[23,26,27], and proper Green–Kubo relations have also been obtained, connecting
transport coefficients to moments of the stochastic description [23,28–33]. Recently,
the methods have been extended to incorporate reactions that conserve particle num-
bers [34,35], and used as an alternative to simulate fluid flows in various applications
[26,27]. It is this numerical method that has been extended here to allow for the total
number of particles to fluctuate in the system and an appropriate stochastic phase-space
description has been connected to it.

The outline of the paper is as follows. In Sect. 2 we derive a generalized Mas-
ter equation that will be appropriately interpreted in Sect. 3 to provide the evolution
equation for a phase-space description corresponding to a particle-based system. The
particle dynamics includes local reactions and collisions, as well as free-streaming of
the individual particles. Section 4 follows with a specific application to the Selkov
model, where we also derive the corresponding macroscopic rate law using appropri-
ate equilibrium assumptions together with an appropriate averaging procedure. Our
numerical results for the Selkov model are presented in Sect. 5 where both large and
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small systems are considered so as to capture the effects of spatial fluctuations on the
system. Important discussions of our results and conclusions form the final section of
this paper.

2 Derivation of a generalized Master equation

In this section we derive a Master equation for the conditional probability density
of a Markov process for a random variable whose total number of components may
change in time. The derivation generalizes the traditional small-time expansion of the
Chapman–Kolmogorov equation [36], but requires proper extension to allow for the
gain and loss of the number of components of the random variable in time.

Suppose a sample space S is made up of mutually exclusive sets Si , i ∈ {0, Z
+}

so that the realization of the random variable X at time t satisfies X(t) = ξ ∈ Si . Let
Pi (ξ , t) be the probability that the random variable X has the realization ξ ∈ Si at time
t , and let Pi | j (ξ , t1|ξ0, t0) be the conditional probability that the random variable X

has the realization ξ ∈ Si at time t1 given that it had the realization ξ0 ∈ S j at time t0.
Then normalization over the sample space S means

∞∑

i=0

∫

Si

Pi (ξ , t)dξ = 1,

and if the process is assumed to be Markovian, then Pi | j satisfies the Chapman–
Kolmogorov equation

Pi | j (ξ , t1|ξ0, t0) =
∞∑

k=0

∫

Sk

Pi |k(ξ , t1|ξ ′, t ′)Pk| j (ξ
′, t ′|ξ0, t0)dξ ′, ∀ i, j ∈ {0, Z

+}

(1)

Assuming further that the process is homogeneous in time, and that t1 > t ′ > t0
without loss of generality, we make the small time expansions

Pβ|β(ξ , t + �t |ξ ′, t) = [
1 − �t aβ(ξ ′)

]
δ(ξ − ξ ′) + �t Wβ|β(ξ |ξ ′)

+o(�t), for β ∈ {0, Z
+} (2a)

Pα|β(ξ , t + �t |ξ ′, t) = �t Wα|β(ξ |ξ ′) + o(�t), for α, β ∈ {0, Z
+}, α �= β, (2b)

where

aβ(ξ ′) =
∞∑

α=0

∫

Sα

Wα|β(ξ |ξ ′)dξ , (3)

to satisfy normalization up to o(�t) (see Appendix A).
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Picking t1 = t + �t , t ′ = t and t0 = 0 in (1), and using the small time expansions
(2a) and (2b) thus leaves

Pi | j (ξ , t+�t |ξ0, 0) =
∞∑

k=0

∫

Sk

Pi |k(ξ , t+�t |ξ ′, t)Pk| j (ξ
′, t |ξ0, 0)dξ ′, ∀ i, j∈{0, Z

+}

=
∞∑

k=0
k �=i

∫

Sk

[
�t Wi |k(ξ |ξ ′) + o(�t)

]
Pk| j (ξ

′, t |ξ0, 0)dξ ′

+
∫

Si

{[
1 − �t ai (ξ

′)
]
δ(ξ − ξ ′) + �t Wi |i (ξ |ξ ′) + o(�t)

}

×Pi | j (ξ
′, t |ξ0, 0)dξ ′,

which, subject to the usual procedure of rearranging and letting �t → 0, leads to the
generalized Master equation

∂

∂t
Pi | j (ξ , t |ξ0, 0) =

∞∑

k=0

∫

Sk

[
Wi |k(ξ |ξ ′)Pk| j (ξ

′, t |ξ0, 0)

−Wk|i (ξ ′|ξ)Pi | j (ξ , t |ξ0, 0)
]

dξ ′, (4)

for all i, j ∈ {0, Z
+}. As usual, if some or all of the components of ξ are discrete, the

integrals over those components should be replaced by appropriate summations.
Note that if Wi |k = 0 for all i �= k, one recovers a system of uncoupled Master

equations that are of the standard forms used in [36]. The novelty of our approach is
the introduction and subsequent interpretation of these non-vanishing transition rates.

3 Evolution equation for a particle-based system

In part 1 of this section we describe the particle dynamics governed by the numerical
method, and part 2 follows with an appropriate interpretation of the stochastic variable
in (4), that corresponds to the stochastic description for the same particle-based system.

3.1 Particle dynamics

We now describe the particle dynamics that has been incorporated in both the numer-
ical model, as well as in the stochastic description. We consider a finite volume V
containing N particles initially that can free-stream, react and collide. The description
describes the evolution of all particles in the system, and reactions and collisions are
treated locally.

To incorporate local events, the system volume is divided into L cells [23,34] that
are distinguished by use of the subscript µ. Given a system comprised of s different
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species of particles labeled X j , j = 1, . . . , s, we define the number of particles of
species type X j in a given cell µ as [34]

nµ
X j =

∑

i | xi ∈Vµ

δαi ,X j , for j = 1, . . . , s,

where αi is the species type of particle i , xi is its position, and δαi ,X j is the usual
Kronecker delta function for which

δαi ,X j =
{

1, if αi = X j

0, if αi �= X j .

The total number of all particles in cell µ is then given by

nµ =
s∑

j=1

nµ
X j .

One can also define the center of mass velocity V
X j
µ of particles of species type X j

in cell µ as

V
X j
µ = 1

n
X j
µ

∑

i | xi ∈Vµ

δαi ,X j vi ,

and the center of mass velocity of all particles in a cell as

Vµ =
∑s

j=1 n
X j
µ m X j V

X j
µ

∑s
j=1 n

X j
µ m X j

,

where m X j is the mass of a particle of species type X j .
Using a numerically efficient mass, momentum and energy-conserving mechanism

introduced in [34], local collisions will change velocities of particles according to

vi = V ′
µ + ω̂µ

(
V ′

µ
αi − V ′

µ

) + ω̂αi
µ ω̂µ

(
v′

i − V ′
µ

αi
)

(5)

where primes denote velocities of particles before the collision. Also, ω̂µ and ω̂
X j
µ are

rotation operators randomly chosen from a set of rotation operators
� = {

ω̂1, ω̂2, . . . , ω̂n
}

at each time step, that vary from cell to cell, and—in the
case of a superscript—from one species to another. Thus, (5) corresponds to a local
“all-species collision”—a collision involving all particles in a given cell—followed by
a “single-species collision” involving collisions between particles of the same species
type in the cell.
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Free-streaming of particles during a time interval �t updates positions according
to

xi = x′
i + vi�t

where vi is the velocity of the particle after the collision step, and x′
i the position of

the particle before collision.
Reaction mechanisms of the type

ar
1 X1 + · · · + ar

s Xs
kr−→ br

1 X1 + · · · + br
s Xs, for r = 1, . . . , m

either change the species type of existing particles in cell µ, or add or remove particles
from a cell, depending on the stoichiometric coefficients ar

i and br
i , and on the reaction

rates kr for the r = 1, . . . , m possible reactions.

3.2 Evolution equation

The generalized Master equation derived in Sect. 2 can be used to describe the evolution
of a phase-space description for a particle based system for which the number of
particles may change in time due to chemical reactions. With this application in mind,
the random variable ξ ∈ Si takes the form

ξ = (α(i), x(i), v(i)) = (α1, . . . , αi , x1, v1, . . . , xi , vi ), (6)

incorporating all species types α1, . . . , αi , and all phase-space coordinates
x1, v1, . . . , xi , vi for the i particles in the system at the given time. The corresponding
Master Eq. 4 for the probability density Pi (ξ , t) now takes the form

∂

∂t
Pi (ξ , t) =

∞∑

k=0

∫ [
Wi |k(ξ |ξ ′)Pk(ξ

′, t) − Wk|i (ξ ′|ξ)Pi (ξ , t)
]

dξ ′, (7)

where the subscript for P is used to denote the dimension of ξ at time t , and all
conditionals have been dropped for brevity. We will treat species types as discrete,
and positions and velocities as continuous so that the first term on the right hand side
of (7) takes the explicit form

∫
Wi |k(ξ |ξ ′)Pk(ξ

′, t)dξ ′

=
∑

α′
(k)

∫ ∫
Wi |k(α(i), x(i), v(i)|α′

(k), x
′
(k), v

′
(k))Pk(α

′
(k), x

′
(k), v

′
(k), t)dx′

(k)dv′
(k).

To incorporate particle collisions, reactions and free-streaming, the transition rates
will be assumed to have the form

Wi |k = F iδi,k + Ri |k

123



J Math Chem (2009) 45:141–160 147

where Fi represents free-streaming of particles for which the total number of parti-
cles remains unchanged, and Ri |k incorporates local particle collisions as well as the
reactive events that change the number of particles in the system from k to i .

If we assume that the free-streaming operator takes the form

Fi (ξ |ξ ′) =
i∏

k=1

δ(xk − x′
k − v′

k�t)δ(v′
k − vk)δα′

k ,αk
,

then the free-streaming portion of the right-hand-side of (7) becomes

Pi (α(i), x(i), v(i), t) − Pi (α(i), x(i) − v(i)�t, v(i), t)

≈ v(i) · ∂

∂x(i)
Pi (α(i), x(i), v(i), t)

=
i∑

k=1

vk · ∂

∂xk
Pi (α(i), x(i), v(i), t)

for �t sufficiently small.
Thus, the generalized evolution equation is

∂

∂t
Pi (ξ , t) + L0 Pi (ξ , t)

=
∞∑

k=0

∫ [
W̃i |k(ξ |ξ ′)Pk(ξ

′, t) − W̃k|i (ξ ′|ξ)Pi (ξ , t)
]

dξ ′, (8)

where L0 = ∑i
k=1 vk · ∂

∂xk
is the standard Liouville operator and W̃i |k = Ri |k incor-

porates local reactions and collisions.
Interpretation of ξ ∈ Si as in (6) to correspond to a particle-based system comprised

of i particles coupled to a Markov process (7,8) for which the number of particles can
change in time represents the novelty of our approach. Phase-space descriptions for
which i is constant (e.g. W̃i |k = 0 for i �= k) have already been used for some time,
but true phase-space descriptions that allow changes in the number of particles in the
system is new.

Note that if the particle dynamics occurs at discrete times mτ , then the transition
rates can be written as

W̃i |k =
∞∑

m=0

δ(t − mτ)(Ri |k − 1),

so that integration of (8) over a time interval mτ − ε to (m + 1)τ − ε gives a corre-
sponding discrete time equation for the system.
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4 Example—the Selkov model

To demonstrate the ability of our model to adequately account for gains and losses of
particles in a spatially extended system, we now consider an open chemical system
whose reaction dynamics is governed by the Selkov model [37]

R1 : A
k1−→X,

R2 : X
k2−→A,

R3 : X + 2Y
k3−→3Y, (9)

R4 : 3Y
k4−→X + 2Y,

R5 : Y
k5−→B,

R6 : B
k6−→Y.

Here R1, . . . , R6 represent the six possible reactions with rates denoted by k1, . . . , k6
respectively.

To adequately test our stochastic description, concentrations of A and B particles
will be kept constant through external controls, and the stochastic description keeps
track of X and Y particles only (s = 2 chemical species with X1 = X and X2 = Y ),
whose numbers thus fluctuate if reactions R1, R2, R5 or R6 have occurred. We will
assume that there is an equal probability that a given X -particle will be considered for
reaction R3 to become a Y particle with probability k3nY

µ(nY
µ − 1), as it is for reaction

R2 where it is removed from the system with probability k2. Likewise, a Y -particle is
as likely to become an X -particle at rate k4(nY

µ − 1)(nY
µ − 2), as it is to be removed

from the system at rate k5. Addition of particles due to R1 or R6 will lead to X or Y
particles placed at random locations in a cell with velocities randomly chosen from a
Maxwellian velocity distribution.

Using s, t to denote the number of particles added to the system due to R1 and R6
reactions respectively, and m, n for the number of particles lost due to R2 and R5, the
non-vanishing transition rates for the Selkov reaction mechanism (9) can be written as

W̃i |i+m+n−s−t (ξ |ξ ′) = Ri |i+m+n−s−t (ξ |ξ ′)
W̃i−m−n+s+t |i (ξ ′|ξ) = Ri−m−n+s+t |i (ξ ′|ξ), (10)

where Ri |i+m+n−s−t (ξ |ξ ′) incorporates all possible reactions taking the system from
state ξ ′ with i + m + n − s − t particles to one with i particles in state ξ . Comparing
to (8), non-vanishing transition rates thus correspond to k = i + m + n − s − t or
i − m − n + s + t , and

∞∑

k=0

=
L∑

s=0

L∑

t=0

Nmax∑

m=0

Nmax∑

n=0

.

Here L is still the number of cells in the (entire) volume, and Nmax is the possibly
infinite, maximum number of particles allowed in the system.
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4.1 Derivation of the macroscopic rate law

If we assume that reactions occur independently in a cell, and that the time step is
small enough so that only one reaction occurs in a cell during a time step, then one can
write a Master equation in the form (8) for each cell. In this case, transition rates (10)
can be replaced by local transition rates W̃ µ

k|i , and the number of particles corresponds
to the number of particles in a cell rather than in the system.

Under these assumptions, non-vanishing transition rates exist only for m + n + s +
t = 0 or 1, and

W̃ µ
i |i+m+n−s−t (ξ |ξ ′) =

[
AR1

i |i−1(ξ |ξ ′)δs,1δt,0 + AR6
i |i−1(ξ |ξ ′)δt,1δs,0

]
δm+n,0

+
[
U R3

i |i (ξ |ξ ′) + U R4
i |i (ξ |ξ ′)

]
δm+n+s+t,0

+
[
DR2

i |i+1(ξ |ξ ′)δm,1δn,0 + DR5
i |i+1(ξ |ξ ′)δm,0δn,1

]
δs+t,0,

with corresponding

W̃ µ
i−m−n+s+t |i (ξ

′|ξ) =
[
AR1

i+1|i (ξ
′|ξ)δs,1δt,0 + AR6

i+1|i (ξ
′|ξ)δs,0δt,1

]
δm+n,0

+
[
U R3

i |i (ξ ′|ξ) + U R4
i |i (ξ ′|ξ)

]
δm+n+s+t,0

+
[
DR2

i−1|i (ξ
′|ξ)δm,1δn,0 + DR5

i−1|i (ξ
′|ξ)δm,0δn,0

]
δs+t,0,

where A and D are used to indicate that a particle has been added or deleted from the
cell, and U to denote that the number of particles remained unchanged by the reaction
mechanism indicated by the superscripts.

The Master equation for the cell, now takes the form

∂

∂t
Pi (ξ , t) =

∫ [
AR1

i |i−1(ξ |ξ ′) + AR6
i |i−1(ξ |ξ ′)

]
Pi−1(ξ

′, t)dξ ′

−
∫ [

AR1
i+1|i (ξ

′|ξ) + AR6
i+1|i (ξ

′|ξ)
]

Pi (ξ , t)dξ ′

+
∫ [

U R3
i |i (ξ |ξ ′) + U R4

i |i (ξ |ξ ′)
]

Pi (ξ
′, t)dξ ′

−
∫ [

U R3
i |i (ξ ′|ξ) + U R4

i |i (ξ ′|ξ)
]

Pi (ξ , t)dξ ′

+
∫ [

DR2
i |i+1(ξ |ξ ′) + DR5

i |i+1(ξ |ξ ′)
]

Pi+1(ξ
′, t)dξ ′

−
∫ [

DR2
i−1|i (ξ

′|ξ) + DR5
i−1|i (ξ

′|ξ)
]

Pi (ξ , t)dξ ′.

All µ superscripts have been dropped for brevity.
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In this context, integration over the subspace Si of the sample space S for any
function f (α(i),X(i),V(i)) will mean

∫

Si

f dξ =
∑

α(i)

∫ ∫
f dx(i)dv(i).

By construction, if ξ ∈ Si , the cell contains i particles.
The average number of particles of species type X can be computed from

nX (t) =
∞∑

i=0

∫

Si

i∑

k=1

δαk ,X Pi (α(i),X(i),V(i))dξ ,

and likewise for nY , while the average number of particles in the cell at time t corre-
sponds to

N (t) =
∞∑

i=0

∫

Si

i Pi (α(i),X(i),V(i))dξ .

Note that nY (t) = N (t) − nX (t).
Based on our numerical method,

AR1
j | j−1(ξ |ξ ′) = 1

||�||
∑

�

k1

j

j∑

l=1

δαl ,X
1

V

(
1

2πkB T

)3/2

e−||vl ||2/2kB T

×
l−1∏

r=1

δαr ,α′
r
δ(xr − x′

r )δ(vr − V ′ − ω̂
(
V ′(α′

r ) − V ′)

− ω̂αr ω̂(v′
r − V ′(α′

r )))

×
j−1∏

s=l

δαs+1,α′
s
δ(xs+1 − x′

s)δ(vs+1 − V ′ − ω̂(V ′(α′
s ) − V ′)

− ω̂α′
s ω̂(v′

s − V ′(α′
s ))),

DR2
j | j+1(ξ |ξ ′) = 1

||�||
∑

�

k2

j+1∑

l=1

δα′
l ,X

×
l−1∏

r=1

δαr ,α′
r
δ(xr − x′

r )δ(vr − V ′ − ω̂(V ′(α′
r ) − V ′)

− ω̂α′
r ω̂(v′

r − V ′(α′
r )))
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×
j∏

s=l

δαs ,α
′
s+1

δ(xs − x′
s+1)δ(vs − V ′ − ω̂(V ′(α′

s+1) − V ′)

− ω̂α′
s+1 ω̂(v′

s+1 − V ′(α′
s+1))),

U R3
j | j (ξ |ξ ′) = 1

||�||
∑

�

j∑

l=1

k3 n′
Y (n′

Y − 1)δα′
l ,Xδαl ,Y

j∏

s=1,
s �=l

δαs ,α′
s

×
j∏

r=1

δ(xr − x′
r )δ(vr − V ′ − ω̂(V ′(α′

r ) − V ′) − ω̂α′
r ω̂(v′

r − V ′(α′
r )))

U R4
j | j (ξ |ξ ′) = 1

||�||
∑

�

j∑

l=1

k4 (n′
Y − 1) (n′

Y − 2)δα′
l ,Y

δαl ,X

j∏

s=1,
s �=l

δαs ,α′
s

×
j∏

r=1

δ(xr − x′
r )δ(vr − V ′ − ω̂(V ′(α′

r ) − V ′) − ω̂α′
r ω̂(v′

r − V ′(α′
r )))

DR5
j | j+1(ξ |ξ ′) = 1

||�||
∑

�

k5

j+1∑

l=1

δα′
l ,Y

×
l−1∏

r=1

δαr ,α′
r
δ(xr − x′

r )δ(vr − V ′ − ω̂(V ′(α′
r ) − V ′)

− ω̂α′
r ω̂(v′

r − V ′(α′
r )))

×
j∏

s=l

δαs ,α
′
s+1

δ(xs − x′
s+1)δ(vs − V ′ − ω̂(V ′(α′

s+1) − V ′)

− ω̂α′
s+1 ω̂(v′

s+1 − V ′(α′
s+1))),

and

AR6
j | j−1(ξ |ξ ′) = 1

||�||
∑

�

k6

j

j∑

l=1

δαl ,Y
1

V

(
1

2πkB T

)3/2

e−||vl ||2/2kB T

×
l−1∏

r=1

δαr ,α′
r
δ(xr − x′

r )δ(vr − V ′ − ω̂(V ′(α′
r ) − V ′)

− ω̂αr ω̂(v′
r − V ′(α′

r )))
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×
j−1∏

s=l

δαs+1,α′
s
δ(xs+1 − x′

s)δ(vs+1 − V ′ − ω̂(V ′(α′
s ) − V ′)

− ω̂α′
s ω̂(v′

s − V ′(α′
s ))),

where V is the volume of a cell.
To explain a bit further, the second and third lines of each of the rates represent the

collision process of (5) as outlined in Sect. 3.1, ensuring that species types of these
particles is unchanged in the collision step. Two lines are required since addition or
removal of a particle essentially requires renumbering of the particles in the system.
For example, adding a particle in the l-th position requires all particles labeled l or
higher, to increase their particle number by one, while removing a particle in the lth
position, requires all particles labeled l +1 or higher to decrease their particle number
by one. The first line of each term specifies the details of how the lth particle is added
or removed from the system, or the change in its species type due to a reaction.

If we assume that the non-reactive events are sufficiently fast to ensure a local
Maxwellian velocity distribution, and that the locations of particles within the cell are
uniformly distributed, then

Pi (ξ) = 1

V i

1

(2πkB T )3i/2 e
−

i∑
k=1

||vk ||2/2kB T
Pi (α(i)).

Conservation of energy in the collision process can then be used to replace primed
velocities with unprimed velocities after integrating over the primed velocities (with
appropriately renumbering the corresponding particles in the case of adding/removing
particles from the system). Furthermore, integrating the resulting equation with respect
to x(i) and v(i) then eliminates all positions and velocities from the equation leaving,
in simplified form,

∂

∂t
Pi (α(i), t) =

i∑

l=1

(
k1

i
δαl ,X + k6

i
δαl ,Y

)
Pi−1(α1, . . . , αl−1, αl+1, . . . , αi )

− (k1 + k6)Pi (α(i))

+ k2

i+1∑

l=1

Pi+1(α1, . . . , αl−1, α
′
l = X, αl , αl+1, . . . , αi )

− k2

i∑

l=1

δαl ,X Pi (α(i))

+ k3

i∑

l=1

δαl ,Y (nY − 1)(nY − 2)Pi (α1, . . . , α
′
l = X, . . . , αi )

− k3

i∑

l=1

δαl ,X nY (nY − 1)Pi (α(i)) (11)
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+ k4

i∑

l=1

δαl ,X nY (nY − 1)Pi (α1, . . . , α
′
l = Y, . . . , αi )

− k4

i∑

l=1

δαl ,Y (nY − 1)(nY − 2)Pi (α(i))

+ k5

i+1∑

l=1

Pi+1(α1, . . . , αl−1, α
′
l = Y, αl , αl+1, . . . , αi )

− k5

i∑

l=1

δαl ,Y Pi (α(i)).

Assuming that the probability is the same irrespective of the ordering of the particles
by number, we consider the ordered state α(i) = (α1 = X, . . . , αnX = X;αnX +1 =
Y, . . . , αi = Y ), and let Pi (α1 = X, . . . , αnX = X;αnX +1 = Y, . . . , αi = Y ) =
Pi (nX , nY ) where nX + nY = i . This step connects our Master equation to the tradi-
tional “keeping track of numbers” approach used in standard stochastic descriptions
for chemical reactive media [36,38]. Then Eq. 11 simplifies to

∂

∂t
Pi (nX , nY , t) = k1

i

nX∑

l=1

Pi−1(nX − 1, nY ) + k6

i

nY∑

l=1

Pi−1(nX , nY − 1)

− (k1 + k6)Pi (nX , nY , t)

+ k2(i + 1)Pi+1(nX + 1, nY ) − k2

nX∑

i=1

Pi (nX , nY )

+ k3

i∑

l=nX +1

(nY − 1)(nY − 2)Pi (nX + 1, nY − 1)

− k3

nX∑

l=1

nY (nY − 1)Pi (nX , nY )

+ k4

nX∑

l=1

nY (nY − 1)Pi+1(nX , nY + 1)

− k4

i∑

l=nX +1

(nY − 1)(nY − 2)Pi (nX , nY )

+ k5(i + 1)Pi+1(nX , nY + 1) − k5

nY∑

l=1

Pi (nX , nY )

or rather,

∂

∂t
Pi (nX , nY , t) = k1

i
nX Pi−1(nX − 1, nY ) + k6

i
nY Pi−1(nX , nY − 1)

− (k1 + k6)Pi (nX , nY , t)
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+ k2(i + 1)Pi+1(nX + 1, nY ) − k2nX Pi (nX , nY )

+ k3(i − nX )(i − nX − 1)(i − nX − 2)Pi (nX + 1, nY − 1) (12)

− k3nX (i − nX )(i − nX − 1)Pi (nX , nY )

+ k4nX (i − nX )(i − nX − 1)Pi+1(nX , nY + 1)

− k4(i − nX )(i − nX − 1)(i − nX − 2)Pi (nX , nY )

+ k5(i + 1)Pi+1(nX , nY + 1) − k5nY Pi (nX , nY )

Assuming a local Poissonian number distribution

Pi (nX , nY ) = e−N

i ! nnX
X nnY

Y

and realizing that the normalization condition under these assumptions means

∞∑

i=0

i∑

nX =0

(
i

nX

)
Pi (nX , nY ) = 1

we multiply (12) by

(
i

nX

)
nX and sum over nX , and i , to get the macroscopic rate

law for nX

d

dt
nX = k1 − k2nX − k3nX n2

Y + k4n3
Y .

Similarly, multiplying (12) by

(
i

nX

)
(i − nX ), where nY = i − nX and appropriate

summation gives the rate law for nY as

d

dt
nY = d

dt
(N − nX )

= k6 − k5nY − k4n3
Y + k3nX n2

Y ,

likewise corresponding to the macroscopic rate law. (Note that V = 1 in our case.)

5 Numerical results

Simulations were performed on a 3-d cubic domain with L = 503 cells of unit
volume. The Selkov reaction mechanism was simulated in the oscillatory domain
with k1 = 0.0001897, k2 = 0.01, k3 = 0.001, k4 = 0.0001, k5 = 0.01 and
k6 = 0.0000253, so as to appropriately test our methods in far-from-equilibrium sit-
uations. Preliminary simulations were conducted to ensure that the particle dynamics
was sufficiently effective to relax quickly to equilibrium in the absence of reactions.

In Fig. 1 we show the phase portrait for average X and Y concentrations (cX =
nX/V = nX ) starting from initial concentrations of 0.6 and 0.16 particles per unit
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Fig. 1 Phase portrait for the Selkov model for 0 ≤ t ≤ 100,000 with L = 503
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Fig. 2 Time evolution of cX , cY versus t for L = 503

volume respectively. The system evolves to the oscillatory steady-state, and agrees well
with simulations of the corresponding macroscopic rate law. The temporal evolution of
the two individual concentrations over the same time interval (0 < t < 100,000) can
be seen in Fig. 2. Again, the temporal evolution of the concentrations compares well
with simulations of the macroscopic rate equations. In Fig. 3 we show that the total
number of particles in the system undergoes large oscillations in time, demonstrating
that our methods correctly capture the dynamics in a far-from-equilibrium system.

The addition and removal of particles leads to fluctuations in momentum and
energy in the system. The temporal evolution of the average kinetic energy ( m

2 〈V 2〉 =
m
2 (〈u2〉+〈v2〉+〈w2〉), as well as the x-, y- and z-momenta with kB T = 0.3 are shown
in Figs. 4 and 5. The fluctuations are clearly visible in the Figures, and one can also see
that the addition and removal of particles leads to minor fluctuations in temperature
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Fig. 3 Time evolution of the total number of particles N in the system. Note that the system undergoes
large fluctuations in the number of particles in time
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Fig. 4 Plot of average kinetic energy of the system (1/2m〈V 2〉, m = 1) as a function of time. Note that
the temperature of the system stays very close to the equilibrium value of kB T = 0.3 even though the total
number of particles changes significantly over time

and momenta in the system even though the system undergoes large fluctuations in
particle numbers, as seen in Fig. 3 by the oscillatory nature of N .

In Fig. 6 we show simulation results for the temporal evolution of average X and Y
concentrations for smaller systems (L = 103 on the left, L = 303 on the right of the
figure). The effect of spatial fluctuations in these smaller systems is evidenced by the
deviations from the macroscopic rate law, which is more pronounced in the smallest
system considered. We also observed more pronounced fluctuations in the energy and
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Fig. 5 Plot of x , y, and
z-momenta (m〈u〉, m〈v〉, m〈w〉
respectively) versus time. Note
that the addition and removal of
particles leads to negligible
fluctuations in momenta
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momenta in the smaller systems. We show this in Figs. 7 and 8, where the fluctu-
ations in the smaller system (L = 103) are significantly more pronounced than for
L = 503.
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Fig. 6 Phase portrait for smaller systems of size L = 103 and L = 203. Here spatial fluctuations lead to
deviations from the macroscopic rate law
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Fig. 7 Temporal evolution of x momentum (m〈u〉) for systems of different size. Note that as the system
size increases, the fluctuations become negligible, but can be significant for smaller systems
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Fig. 8 Comparison of average kinetic energy as a function of system size. As the system size increases,
the fluctuations become negligible
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6 Discussion and conclusions

In this paper, we have derived a generalized master equation from the Chapman–
Kolmogorov equation so as to provide a theoretical framework for a system in which
the number of components of the random variable can change in time. As an appli-
cation of the theory, we chose a particle-based system for which the random variable
incorporates the species types, and phase-space coordinates of the particles in the
system at a given time. To appropriately test the model, we chose a Selkov reaction
mechanism driven out of equilibrium through addition/removal of two of the chemical
species, so that the total number of particles in the system changes in time. Transition
rates were specified explicitly to account for local particle collisions, free-streaming
of particles, and local reactions according to the Selkov model. To check the valid-
ity of our approach, we derived the macroscopic rate law from the Master equation
using appropriate equilibrium assumptions and by defining an appropriate averaging
procedure for the stochastic model. We also verified that in large systems, the cor-
responding numerical method agrees with the solutions of the macroscopic rate law.
Furthermore, our simulations for smaller systems showed that spatial fluctuations can
affect the system, demonstrating the ability of our methods to incorporate such effects.
Having successfully derived a stochastic phase-space description that—coupled to a
numerical model—has been shown to lead to correct macroscopic behaviour, we have
provided a framework in which the effects of spatial fluctuations can be assessed nu-
merically as well as theoretically. Application for which these methods are important
include biochemical networks and reactive fluid flows.

Appendix A:

In this appendix, we show that the small time expansions (2a) and (2b) subject to (3),
are consistent with the normalization condition up to o(�t).

For every β ∈ {0, Z
+}, consider ξ ′ ∈ Sβ , where S = ∪∞

i=0Si from Sect. 2. Then,

∫

S

P(ξ , t + �t |ξ ′, t)dξ =
∞∑

α=0

∫

Sα

Pα|β(ξ , t + �t |ξ ′, t)dξ

=
∞∑

α=0
α �=β

∫

Sα

Pα|β(ξ , t + �t |ξ ′, t)dξ +
∫

Sβ

Pβ|β(ξ , t + �t |ξ ′, t)dξ

=
∞∑

α=0
α �=β

∫

Sα

[
�t Wα|β(ξ |ξ ′) + o(�t)

]
dξ +

∫

Sβ

{[
1 − �t aβ(ξ ′)

]
δ(ξ − ξ ′)

+�t Wβ|β(ξ |ξ ′) + o(�t) } dξ

(using (2a) and (2b))
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= 1 − �taβ(ξ ′) + �t
∞∑

α=0

∫

Sα

Wα|β(ξ , ξ ′)dξ + o(�t)

= 1 + o(�t),

using (3).
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